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Copyright © 2018 Zhijian Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Active Disturbance Rejection Control (ADRC) prefers the cascaded integral system for a convenient design or better
control effect and takes it as a typical form. However, the state variables of practical system do not necessarily have a cascaded
integral relationship. Therefore, this paper proposes an algebraic substitution method and its structure, which can convert a
noncascaded integral system of PID control into a cascaded integral form. The adjusting parameters of the ADRC controller are
also demonstrated. Meanwhile, a numerical example and the oscillation control of a flexible arm are demonstrated to show the
conversion, controller design, and control effect. The converted system is proved to be more suitable for a direct ADRC control. In
addition, for the numerical example, its control effect for the converted system is compared with a PID controller under different
disturbances. The result shows that the converted system can achieve a better control effect under the ADRC than that of a PID.
The theory is a guide before practice. This converting method not only solves the ADRC control problem of some noncascaded
integral systems in theory and simulation but also expands the application scope of the ADRC method.

1. Introduction

The Active Disturbance Rejection Control (ADRC) has
begun to be used in many areas recently [1–23]. This theory
was first proposed by Han [24, 25]. The central idea is that
the internal dynamic and external disturbance of a controlled
system can be estimated and compensated in real time with a
tracking differentiator (TD), extended state observer (ESO),
nonlinear state error feedback (NLSEF), compensator, etc.
Thus, the ADRC may promote the control quality and speed
where PID is used [25].

For the ADRC, its ESO is a cascaded integral form, its
TD tracks the system state and derivative, and its NLSEF is
based on the ESO and TD. Thus, these characteristics make
the ADRC suitable for a cascaded integral system. This is
because the system order, system variables, and known states
are explicit to the ESO and TD for the system in a cascaded
integral form. Then, the ADRC usually selects the cascaded
integral system as a typical form for an easy design or better
control effect. For example, in 2015, Shao thought that the

ADRC was available to a cascaded integral system, such as a
motion control system [10]. In 2006, Gao also thought that if
a plant model was in a cascaded integral form, the ESO could
be established, and the ADRC could has a full state feedback
from the ESO [26].

However, in practical control systems, there are many
cases of noncascaded integral forms. When necessary, a
converting method is needed to get the cascaded integral
form. At present, the research in this field is as follows: (1)
Some scholars adopted a convertingmethod.TheDifferential
Geometry is one of them [27]. This method combines a
nonlinear state conversion and linearization using its object
model. Also in 2014, Huang converted a two-order state
space form into the cascaded integral system by amathematic
transform [28]. In 2014, Huang used the same method
to convert a multiorder state space system [28]. In 2014,
Ramı́rez-Neria utilized the decoupling property of the object
model and decomposed it into the cascaded connection of
two independent blocks [29]. (2) Some ADRC applications
were limited to the control system with an implicit cascaded
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integral form, such as the differential equation, rational
proper fraction, or state space form, as shown in [12, 13,
26, 30]. (3) Some ADRC applications were limited to the
control system with an explicit cascaded integral system.
For example, the nonlinear ADRC has been applied to the
fast tool servo systems [14, 31], which are cascaded integral
systems with two stages.

As the real control systems have various forms, there are
many styles to be converted, and their converting method
may also be different. In practical application, the PID feed-
back control is themost widely used. If the PID control object
of a noncascaded integral form can be converted into the
cascaded integral system, it would be highly representative.

Therefore, an algebraic substitutionmethod and its struc-
ture are proposed in this paper to convert the noncascaded
integral system of a PID control object into the cascaded
integral form. The adjusting parameters of the ADRC con-
troller are also demonstrated. A numerical example and the
oscillation control of a flexible arm are simulated to show the
conversion and ADRC control effect. The converted system
is proved to be more suitable for a direct ADRC control.
The ADRC can achieve a nonovershoot tracking control
while satisfying the rapidity under disturbances. In addition,
the control effect of the numerical example is compared
under the periodical, white noise and inaccurate model
disturbances during a step input responsewhile the controller
and its parameters are kept invariable. The results show that
the converted system can achieve a better control effect for
the ADRC than that of a PID.

Thus, this paper presents an approach, which can trans-
form a noncascaded integral system into the cascaded
integral form for an easier and better ADRC control. The
converted ADRC control system has a good antidisturbance
and adaptive effect. The theory is a guide before practice.
This convertingmethod solves theADRCcontrol problems of
some noncascaded integral systems in theory and simulation.
It also expands the application scope of the ADRC method.

2. The ADRC Control Method

For a continuous system, the ADRC control method adopts
the following four steps:

(1)Arranging a transient process for the control reference
with the TD:

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑓ℎ𝑎𝑛 (𝑥1 − V, 𝑥2, 𝑟, ℎ0)

(1)

𝑓ℎ𝑎𝑛 = −𝑟 (𝑎
𝑑)𝑓𝑠𝑔 (𝑎, 𝑑)

− 𝑟 sign (𝑎) (1 − 𝑓𝑠𝑔 (𝑎, 𝑑))
𝑑 = 𝑟 ⋅ ℎ2

0

𝑎0 = ℎ0 ⋅ 𝑥2 (𝑡)
𝑦 = 𝑥1 (𝑡) + 𝑎0
𝑎1 = √𝑑 (𝑑 + 8 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)

𝑎2 = 𝑎0 + sign (𝑦) (𝑎1 − 𝑑)
2

𝑎 = (𝑎0 + 𝑦)𝑓𝑠𝑔 (𝑦, 𝑑) + 𝑎2 (1 − 𝑓𝑠𝑔 (𝑦, 𝑑))
𝑓𝑠𝑔 (𝑥, 𝑑) = (sign (𝑥 + 𝑑) − sign (𝑥 − 𝑑))

2
(2)

In it, 𝑥1, 𝑥2 are the system state and its first derivative,
respectively; V is the control reference; ℎ0 is the filtering
factor; 𝑟 is the time ruler; sign is a sign function; and 𝑓ℎ𝑎𝑛
is a constructed nonlinear function shown in (2) [16, 32].

(2) Estimating the system states and total disturbance of
the controlled object with the ESO:

𝑧̇1 = 𝑧2 − 𝛽01𝑒
𝑧̇2 = 𝑧3 − 𝛽02𝑓𝑒 + 𝑢
𝑧̇3 = −𝛽03𝑓𝑒1
𝑒 = 𝑧1 − 𝑦,

𝑓𝑒 = 𝑓𝑎𝑙 (𝑒, 0.5, 𝛿) ,
𝑓𝑒1 = 𝑓𝑎𝑙 (𝑒, 0.25, 𝛿)

(3)

𝑓𝑎𝑙 (𝑒, 𝛼, 𝛿) = {
{{

𝑒
𝛿𝛼−1 , |𝑒| ≤ 𝛿
|𝑒|𝛼 sign (𝑒) , |𝑒| > 𝛿 (4)

In it, 𝑒 is the error between the estimated state and system
output; 𝑧1, 𝑧2, and 𝑧3 are the estimations of the system states
𝑥;𝛽01,𝛽02, and𝛽03 are gain coefficients; 𝑢 is the control signal;
𝑦 is the system output; 𝛿 and 𝛼 are the parameters of 𝑓𝑎𝑙
function; 𝑓𝑒 and 𝑓𝑒1 are the outputs of 𝑓𝑎𝑙 function; 𝑓𝑎𝑙 is
another constructed nonlinear function shown in (4) [16, 32].

(3)The nonlinear state error feedback with the NLSEF:

𝑒1 = 𝑥1 − 𝑧1,
𝑒2 = 𝑥2 − 𝑧2
𝑢0 = 𝛽1𝑓𝑎𝑙 (𝑒1, 𝛼1, 𝛿1) + 𝛽2𝑓𝑎𝑙 (𝑒2, 𝛼2, 𝛿1)

(5)

In it, 𝑒1 and 𝑒2 are the errors between the estimated states
and system states; 𝑢0 is an intermediate control output before
compensation; 𝛽1 and 𝛽2 are gain coefficients; 𝛼1, 𝛼2, 𝛿1 are
the parameters of 𝑓𝑎𝑙 function.

(4)The disturbance compensation with a compensator:

𝑢 = 𝑢0 − 𝑧3
𝑏0 (6)

In it, 𝑏0 is the amplification factor of the control signal; 𝑢
is a final control signal.

3. The Algebraic Substitution Method and Its
Structure for the ADRC

Remark 1. According to (1) and (3), if 𝑥1, 𝑥̇1, 𝑥2, 𝑥̇2, and their
counterparts 𝑧1, 𝑧̇1, 𝑧̇2, and 𝑧̇3 of the controlled system are
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explicit, this system is in a cascaded integral form. Then, the
TD, ESO, and NLSEF of the ADRC controller can be easily
designed.

The cascaded integral system is a closed state feedback
system, and its archetype can be described ideally in

𝑥̇1 = 𝑓1 + 𝑥2
...

𝑥̇𝑛−1 = 𝑓𝑛−1 + 𝑥𝑛
𝑥̇𝑛 = 𝑓𝑛 + 𝑏𝑢

𝑦 = 𝑥1

(7)

In it, 𝑥𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are the state variables of the controlled
system; 𝑓𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are the unknown system functions;
𝑢 is the control signal; 𝑦 is the system output; and the
coefficient 𝑏 ∈ R𝑛. This kind of cascaded integral system is
a typical form suitable for the ADRC.

Then, a method is needed to construct an object system
and convert the noncascaded integral system into the above
cascaded integral form. The two-order control system in (8)
is taken for example.

𝑥̈ = −𝑎1𝑥 − 𝑎2𝑥̇ + 𝑢 + 𝜔
𝑦 = 𝑥 (8)

In it, 𝑢 is the control signal; 𝑦 is the system output; 𝑥 is the
system state; and 𝜔 is the system disturbance. V is set as the
control reference. Thus, the error between the system state
and control reference is

𝑒 = V − 𝑥 = V − 𝑦 (9)

Then, the proposed algebraic substitution method and its
structure adopt the following six steps as shown in Figure 1:

(1) The PID control output for the controlled system is
given as

𝑢 = 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) (10)

In it, 𝐾,𝑇𝑖, 𝑇𝑑 are the feedback gain, integral time, and
differential time of the PID controller, respectively.

(2) In order to construct a cascaded integral system, let

∫𝑡
0

𝑒 (𝑡) 𝑑𝑡 = 𝑒0 (𝑡) (11)

(3)Then, the derivative of (11) is deduced as

̇𝑒0 (𝑡) = 𝑒 (𝑡) (12)

Then,

̈𝑒 (𝑡) = 𝑑2 (V − 𝑥)
𝑑𝑡2 = −𝑥̈ = 𝑎1𝑥 + 𝑎2𝑥̇ − 𝑢 − 𝜔 (13)

(4) By substituting (10) into (13), the following can be
obtained:

̈𝑒 (𝑡) = 𝑑2 (V − 𝑥)
𝑑𝑡2 = −𝑥̈

= 𝑎1𝑥 + 𝑎2𝑥̇ − 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) − 𝜔
= 𝑎1 (𝑥 − V) + 𝑎1V + 𝑎2𝑥̇

− 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) − 𝜔
= 𝑎1 (𝑥 − V) + 𝑎1V − 𝑎2 (V̇ − ̇𝑒)

− 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) − 𝜔
= 𝑎1 (𝑥 − V) + 𝑎1V + 𝑎2 ̇𝑒

− 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) − 𝜔
= − (𝑎1 + 𝐾) 𝑒 − (𝐾𝑇𝑑 − 𝑎2) ̇𝑒 + 𝑎1V

− 𝐾
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 − 𝜔

(14)

(5)According to (12), the substitution relationships of the
variables are set as

̇𝑒0 (𝑡) = 𝑒 (𝑡) = 𝑒1 (𝑡) , (15)

̇𝑒 (𝑡) = 𝑒2 (𝑡) (16)

(6) After arrangement, the above equations can be con-
verted into a cascaded integral system as follows:

̇𝑒0 = 𝑒1, 𝑒0 (0) = 0
̇𝑒1 = 𝑒2, 𝑒1 (0) = V (0)
̇𝑒2 = −𝐾

𝑇𝑖 𝑒0 − (𝐾 + 𝑎1) 𝑒1 − (𝐾𝑇𝑑 − 𝑎2) 𝑒2 + 𝑎1V − 𝜔,
𝑒2 (0) = 0

𝑦 = V − 𝑒1

(17)

Thus, the structure of a cascaded integral ADRC control
system is shown in Figure 2. In the virtual frame, it is a
cascaded integral object system of 𝑛 orders. The other part
is an error-feedback ADRC controller consisting of the TD,
ESO, NLSEF, and disturbance compensator. The TD, ESO,
NLSEF, disturbance compensator, and their variables are seen
in ((1)-(6)).

4. The Parameters of ADRC Controller

Although the ADRC has many parameters to determine its
control effect, it is not difficult to determine them. This is
because many parameters have their universal values that are
suitable for most conditions.
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Object system

PID control
expression

1st
Element exchange

Further Derivation

Closed loop
expression

2nd
Element exchange

Cascaded
integral system

Figure 1: The principle of the proposed algebraic substitution method and its structure.
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z2 z3

ESO
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−

Figure 2: The structure of a cascaded integral ADRC control system.

4.1. The Adjusting Parameters of the TD. For the TD, the
discrete time step ℎ usually takes ℎ = 0.01, ℎ0 usually takes
20∼30 times of the ℎ, and 𝑟 usually takes several tens [33, 34].

Figure 3 shows that, for a greater 𝑟, the TD output 𝑥1(𝑡)
is closer to the input signal, and the TD output 𝑥2(𝑡) is closer
to the derivative and vice versa. However, if 𝑟 is too large, the
tracking quality will be deteriorated by the noise in the input
signal.

For a smaller ℎ0, a similar simulation can also show that
the TD has a better tracking effect and vice versa. If ℎ0 is
too small, the tracking quality will also be deteriorated by the
noise in the input signal.

Figure 4 shows that, as long as the discrete time step
ℎ ≤ ℎ0, the stable oscillation in the TD outputs can always
be eliminated.

4.2. The Adjusting Parameters of the ESO, NLSEF, and Com-
pensator [35, 36]. A successful 𝑧1, 𝑧2, 𝑧3 output of the ESO
under 𝛽01 = 100, 𝛽02 = 300, 𝛽03 = 1000, 𝛼1 = 0.5, 𝛼2 = 0.25,
and 𝛿 = 0.05 is shown in Figure 5.

The 𝛼 in the 𝑓𝑎𝑙 function of the ESO and NLSEF is the
power of its exponential function. When it does not equal 1,
the ADRC is a nonlinear controller. The 𝛿 in the 𝑓𝑎𝑙 is only
effective for a nonlinear system. A lot of simulations show
that a small change in these parameters will greatly affect the
setting of other parameters. Thus, these parameters should
not be modified after the ADRC controller has been started,
while the other parameters 𝛽01, 𝛽02, 𝛽03, 𝑏0 can be modified
online.

In general, the 𝛼 takes a fixed value of 𝛼1 = 0.5, 𝛼2 = 0.25
for the ESO or 𝛼1 = 0.75, 𝛼2 = 1.25 for the NLSEF based on a

practical experience, which is to reduce its power calculation.
If the 𝛿 is too large, the ADRC can only work in a linear
region. If the 𝛿 is too small, the ADRC may have oscillation
phenomenon.Thus, the 𝛿 generally takes 0.1 at first, and then
it is fine-tuned according to the control effect.

The 𝛽01, 𝛽02, and 𝛽03 affect the estimation of control
system states and disturbance, respectively. If the disturbance
is large, the 𝛽01, 𝛽02, 𝛽03 should also be large. In addition, the
larger the 𝛽03, the smaller the delay. However, if 𝛽03 is too
large, it probably causes the estimated value to diverge. An
appropriate increase of 𝛽01, 𝛽02 can suppress this divergence.
However, if 𝛽01, 𝛽02 are too large, the estimated value will
also diverge. Thus, these parameters should be coordinately
adjusted.

A small change of 𝑏0 will also lead to a jumping change
in the control output. The 𝑏0 usually takes a larger value for a
delay system. A larger 𝑏0 can also effectively compensate the
disturbance and model uncertainty.

5. The ADRC Control Effect of
the Converted System

Example 2. A two-order dynamic system

𝑥̈ = −6𝑥̇ − 3𝑥 + 𝜔 + 𝑢
𝑦 = 𝑥 (18)

is taken for example.The control reference is a unit step signal
of V = 1 from time 1 and initial value 0. This is because the
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Figure 3: The tracking and derivative outputs of a TD with 𝑟 = 5, 50, 500, respectively, and ℎ = 0.01 and ℎ0 = 0.01 under a step response.
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Figure 4: The tracking and derivative outputs of a TD with ℎ = 0.001, 0.01, 0.1, respectively, and 𝑟 = 50, ℎ
0
= 0.01 under a step response.
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= 0.5, 𝛼

2
= 0.25, and 𝛿 = 0.05.

step response is the most destructive to a dynamic system. In
(18), 𝑢 is the control signal, and

𝜔 = sin (𝑡) + 𝛾𝑛 (𝑡) (19)

The 𝜔 is an added disturbance; 𝑛(𝑡) is a white noise; its mean
value is 0; and variance is 1; 𝛾 = 0.1.

Then, the control effect will be tested under no distur-
bance, a periodical disturbance, white noise, or inaccurate
model disturbance from time 0. If the controller can resist
all these kinds of disturbances while keeping the controller

design and its parameters invariable, it has a good adaptive
ability and can work on most occasions.

5.1. The Conversion and the ADRC Controller Design. Now,
the control system of (18) will be converted into a cascaded
integral form according to ((9)-(17)), that is, the algebraic
substitution method and its structure presented in Section 3.
First, V is set as the control reference. The error between the
system state and control reference is

𝑒 = V − 𝑥 = V − 𝑦 (20)
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Then, the conversion adopts the following six steps:
(1) The PID control output for the controlled system is

given as

𝑢 = 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒)

= 34 ( 1
17 ∫𝑡
0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 0.8 ̇𝑒)
(21)

In it, the controller parameters take 𝐾 = 34, 𝑇𝑖 = 17, and
𝑇𝑑 = 0.8, which are the same as that of the PID controller in
Section 5.4 for a convenient comparing.

(2) In order to construct a cascaded integral system, let

∫𝑡
0

𝑒 (𝑡) 𝑑𝑡 = 𝑒0 (𝑡) (22)

(3)Then, the derivative of (22) is deduced as

̇𝑒0 (𝑡) = 𝑒 (𝑡) (23)

Then

̈𝑒 (𝑡) = 𝑑2 (V − 𝑥)
𝑑𝑡2 = −𝑥̈ = 3𝑥 + 6𝑥̇ − 𝑢 − 𝜔, (24)

(4)By substituting (21) into (24) and according to (14), the
following can be obtained:

̈𝑒 (𝑡) = 𝑑2 (V − 𝑥)
𝑑𝑡2 = −𝑥̈

= 3𝑥 + 6𝑥̇ − 𝐾( 1
𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) − 𝜔

= −37𝑒 − 21.2 ̇𝑒 + 3V − 2∫𝑡
0

𝑒 (𝑡) 𝑑𝑡 − 𝜔

(25)

(5)According to (23), the substitution relationships of the
variables are set as

̇𝑒0 (𝑡) = 𝑒 (𝑡) = 𝑒1 (𝑡) , (26)

̇𝑒 (𝑡) = 𝑒2 (𝑡) (27)

(6) After arrangement, the control system of (16) can be
converted into a new cascaded integral form as follows:

̇𝑒0 = 𝑒1, 𝑒0 (0) = 0
̇𝑒1 = 𝑒2, 𝑒1 (0) = V (0)
̇𝑒2 = −2𝑒0 − 37𝑒1 − 21.2𝑒2 + 3V − 𝜔, 𝑒2 (0) = 0
𝑦 = V − 𝑒1

(28)

In (28), the new system states are 𝑒0, 𝑒1, and 𝑒2.Then, the new
system of the cascaded integral form in (28) can be directly
controlledwith theADRC controller in Section 2.The control
reference is still the unit step signal of V = 1 from time 1 and
initial value 0. The adopted ADRC controller is in ((1)-(6)).
TheADRCparameters for the best control effect can be found
as 𝑟 = 30 and ℎ0 = 0.3; 𝛽01 = 100, 𝛽02 = 300, 𝛽03 = 1000, and
𝛿 = 0.05; 𝛼1 = 0.75, 𝛼2 = 1.25, 𝛽1 = 100, 𝛽2 = 10, and 𝛿1 = 0;
𝑏0 = 1 with a trial and error method.The discrete time step is
ℎ = 0.01.

5.2. The ADRC Control Effect of the Converted System. When
the disturbance is𝜔 = 0 and the ADRC controller parameters
are set according to Section 5.1, the control effect for the unit
step input V = 1 at time 1 is shown in Figure 6. Then, for the
same control condition, Figure 6 also shows the control effect:
(1) under a periodical disturbance of 𝜔 = sin(𝑡); (2) under
a periodical and white noise disturbances of 𝜔 = sin(𝑡) +
𝛾𝑛(𝑡). The simulation shows that the ADRC can achieve a
nonovershoot unit step tracking control while satisfying the
rapidity under all the disturbances. This control effect is very
close to that of no disturbance. Thus, the ADRC control for
the converted cascaded integral system is feasible.

5.3. The ADRC Control Effect under Model Parameter Error
of 100%. Assume that the model parameters 𝑎1 and 𝑎2 and
other parameters 𝐾, 𝑇𝑖, and 𝑇𝑑 in (17) cannot be accurately
estimated. For example, these parameters are reduced to 100%
error from their true values. Then, under the same ADRC
controller and its parameters as well as the same unit step
input V = 1 at time 1, Figure 7 shows the control effect:
(1) under a periodical disturbance of 𝜔 = sin(𝑡); (2) under
a periodical and white noise disturbances of 𝜔 = sin(𝑡) +
𝛾𝑛(𝑡). The simulation shows that the ADRC controller can
still achieve a nonovershoot unit step tracking control while
satisfying the rapidity under all the disturbances. This is
because the parameter errors of the object model can also be
seen as a disturbance and then be estimated and compensated
by the ESO and compensator.Thus, the noncascaded integral
system with an inaccurate object model and parameter can
still achieve the conversion and ADRC control, as long as the
system order can be determined. This is also an advantage of
the ADRC controller.

If the model parameters 𝑎1 and 𝑎2 and other parameters
𝐾, 𝑇𝑖, and 𝑇𝑑 are increased to 100% error from their true
values, the simulation shows that the ADRC controller can
still achieve the above control effect under the same ADRC
controller and disturbances. This will not be repeated here.
The reason is also the same. The results also show that the
cascaded integral ADRC control system has a strong adaptive
ability. Thus, the antidisturbance ability is good enough to
let the controller parameters invariable.This ability can resist
the periodical, white noise, and inaccuratemodel disturbance
during the step response while keeping controller and its
parameters unchanged.

5.4. The Comparing PID Control for the Original System. A
PID controller can also be designed to control the system of
(18) as

𝑒 = V − 𝑥,
𝑢 = 𝐾( 1

𝑇𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡 + 𝑒 + 𝑇𝑑 ̇𝑒) (29)

The parameters of the best control effect can be found as𝐾 =
34, 𝑇𝑖 = 17, and 𝑇𝑑 = 0.8 with a trial and error method.

When the disturbance is 𝜔 = 0, the control effect for
the unit step input V = 1 at time 1 is shown in Figure 8.
Then, for the same control condition, Figure 8 also shows



www.manaraa.com

Mathematical Problems in Engineering 7

0 2 4 6 8 10 12 14 16 18 20
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Time (s)
y(

t)

=sin(t)
=sin(t)+n(t)
=0

Figure 6:The ADRC control effect with parameters 𝑟 = 30 and ℎ0 = 0.3; 𝛽01 = 100, 𝛽02 = 300, 𝛽03 = 1000, and 𝛿 = 0.05; 𝛼1 = 0.75, 𝛼2 = 1.25,
𝛽
1
= 100, 𝛽

2
= 10, and 𝛿

1
= 0; 𝑏

0
= 1 for (a) under no disturbance; (b) under a periodical disturbance of 𝜔 = sin(𝑡); (c) under a periodical

and white noise disturbances of 𝜔 = sin(𝑡) + 𝛾𝑛(𝑡).

0 2 4 6 8 10 12 14 16 18 20
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Time (s)

y(
t)

=sin(t)
=sin(t)+n(t)

Figure 7: The control effect under the same ADRC controller and its parameters with 100% model error when there is (a) a periodical
disturbance of 𝜔 = sin(𝑡); (b) a periodical and white noise disturbances of 𝜔 = sin(𝑡) + 𝛾𝑛(𝑡).

the control effect: (1) under a periodical disturbance of 𝜔 =
sin(𝑡); (2) under a periodical and white noise disturbance
of 𝜔 = sin(𝑡) + 𝛾𝑛(𝑡). The results show that the PID
controller can only achieve an overshoot unit step tracking
control under no disturbance. The antidisturbance ability
of the PID controller is very limited for the periodical and
white noise disturbances if its parameters cannot be adjusted
adaptively. Thus, compared with Figures 6-7, the ADRC for
the converted system has a much better adaptive ability and
control effect than that of the PID controller.

6. Application in the Oscillation Control of
a Flexible Arm

Example 3. For the oscillation control of a flexible arm, its
mathematical model can be formulated as the following par-
allel system of (30). The oscillation is decomposed according
to its frequency spectrum. Assume that the first three terms
of the oscillation are as follows:

𝑥̈1 = −𝜔2
1
𝑥1 − 2𝜉1𝜔1𝑥̇1 + 𝑏1𝑢 = 1

176𝑢
𝑥̈2 = −𝜔2

2
𝑥2 − 2𝜉2𝜔2𝑥̇2 + 𝑏2𝑢

= −4.2849𝑥2 − 0.01242𝑥̇2 + 1.28
176 𝑢

𝑥̈3 = −𝜔2
3
𝑥3 − 2𝜉3𝜔3𝑥̇3 + 𝑏3𝑢

= −561.69𝑥3 − 0.1422𝑥̇3 + 0.03
176 𝑢

𝑦 = 𝑥1 + 𝑥2 + 𝑥3
(30)

In it, 𝑥1, 𝑥2, and 𝑥3 are the oscillation of the fundamental,
second harmonic, and third harmonic frequency (𝜔1, 𝜔2, 𝜔3)
for the flexible arm, respectively, 𝜉1, 𝜉2, 𝜉3 is the elastic
coefficient of each frequency, 𝑢 is the added control signal to
suppress the oscillation of the flexible arm, and 𝑏𝑖, 𝑖 = 1, 2, 3,
is the coefficient of each control signal.

Here, the control reference is to make the system output
𝑦 = 𝑥1 + 𝑥2 + 𝑥3 close to 0 as soon as possible, that is,
𝑦∗ = 0, and its initial value is assumed as 𝑦(0) = 1.0.
As (30) is an underdriven control system, adopting a single-
input single-output ADRC controller directly cannot achieve
its control effect. Because of the coupling relationship among
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the three oscillation variables, the control effect either cannot
be achieved by adopting three ADRC controllers in parallel.

According to (30), it has𝜔1 = 0,𝜔2 = 2.07,𝜔3 = 23.7, and
𝜉1 = 𝜉2 = 𝜉3 = 0.003. Taking the constructing intermediate
variables 𝜔0 = 0.18079747, and 𝜉0 = 0.003, (30) can be
converted into a system of following form:

𝑥̈1 = −𝜔2
0
𝑥1 − 2𝜉0𝜔0𝑥̇1 + 𝑏1𝑢 − (𝜔2

1
− 𝜔2
0
) 𝑥1

− 2 (𝜉1𝜔1 − 𝜉0𝜔0) 𝑥̇1 = 1
176𝑢

𝑥̈2 = −𝜔2
0
𝑥2 − 2𝜉0𝜔0𝑥̇2 + 𝑏2𝑢 − (𝜔2

2
− 𝜔2
0
) 𝑥2

− 2 (𝜉2𝜔2 − 𝜉0𝜔0) 𝑥̇2
= −𝜔2
0
𝑥2 − 2𝜉0𝜔0𝑥̇2 + 1.28

176 𝑢 − (2.072 − 𝜔2
0
) 𝑥2

− 2 (0.003 ⋅ 2.07 − 𝜉0𝜔0) 𝑥̇2
𝑥̈3 = −𝜔2

0
𝑥3 − 2𝜉0𝜔0𝑥̇3 + 𝑏3𝑢 − (𝜔2

3
− 𝜔2
0
) 𝑥3

− 2 (𝜉3𝜔3 − 𝜉0𝜔0) 𝑥̇3
= −𝜔2
0
𝑥3 − 2𝜉0𝜔0𝑥̇3 + 0.03

176 𝑢 − (23.72 − 𝜔2
0
) 𝑥3

− 2 (0.003 ⋅ 23.7 − 𝜉0𝜔0) 𝑥̇3
𝑦 = 𝑥1 + 𝑥2 + 𝑥3

(31)

By combining the similar terms in each line of (31), the
following can be obtained:

̈𝑦 = −𝜔2
0
𝑦 − 2𝜉0𝜔0 ̇𝑦 + 𝑏𝑢 + 𝜔 (𝑥, 𝑥̇)

𝜔 (𝑥, 𝑥̇) = −
3

∑
1

[(𝜔2
𝑖
− 𝜔2
0
) 𝑥𝑖 − 2 (𝜉𝑖𝜔𝑖 − 𝜉0𝜔0) 𝑥̇𝑖]

𝑏 =
3

∑
1

𝑏𝑖 = 0.012972

(32)

After this transformation, the proposed algebraic substi-
tution method and its structure can convert (32) into to a
cascaded integral system according to ((8)-(17)), which will
not be repeated here. Then, the ADRC controller can be
directly and easily used to control the converted cascaded
integral system. As long as the coefficients 𝜔2

0
, 2𝜉0𝜔0 in (32)

change in a certain range, the ADRC controller can always
suppress the oscillation of the flexible arm well.

The adjusting parameters of the ADRC controller are
taken as ℎ0 = 0.05; 𝛽01 = 100, 𝛽02 = 200, 𝛽03 = 800, and
𝛿 = 0.05; 𝛼1 = 0.75, 𝛼2 = 1.25, 𝛽1 = 100, 𝛽2 = 10, and
𝛿1 = 0; 𝑏0 = 0.003 with a trial and error method. As for the
𝑟, it can take a proper big value 𝑟 = 2.5 for a good control
effect. Although the flexible arm model has 𝑏 = 0.012972,
the 𝑏 is not necessarily known in a real system. Thus, it is
better to regard the 𝑏 as an adjustable parameter.The dividing
frequency of the flexible arm model is taken as 𝜔2

1
= 0,

𝜔2
2
= 4.2849, and 𝜔2

3
= 561.69 according to (30), respectively.

The simulation results are shown in Figure 9. The oscillation
can be suppressed quickly without overshoot, and the control
signal is small and reasonable.

If the frequencies of the flexible arm model are changed
into 𝜔2

1
= 0, 𝜔2

2
= 1, 𝜔2

3
= 16 or 𝜔2

1
= 0, 𝜔2

2
= 9, and

𝜔2
3

= 1600, the simulation results are very similar to that
of Figure 9. The controller parameters for the three cases are
fixed, but the oscillationmode change is so large, which shows
that the ADRC controller plays a very good antioscillation
and adaptive effect with the proposed noncascaded integral
ADRC control system.

7. Conclusions

This paper begins with an introduction to the ADRCmethod
and its typical form for the cascaded integral system. Since
the real systems do not necessarily have the cascaded integral
form, this paper proposes an algebraic substitution method
and its structure, which can convert a noncascaded integral
system into the cascaded integral form. By this way, the
converted system can be controlled directly and easily using
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system.

the ADRC method. Meanwhile, a numerical example and
the oscillation control of a flexible arm are simulated to
demonstrate the conversion and its control effect. In addition,
the control effect of the numerical example is compared
between the converted ADRC control system and the PID
control system under a variety of disturbances while keeping
the two controllers and their parameters invariable.

The research results show the following: (1) This con-
verting method is feasible not only in theory but also in
simulation. (2) For the converted cascaded integral system,
the ADRC can achieve a nonovershoot tracking control while
satisfying the rapidity undermany forms of disturbances, and
the ADRC controller also has a better control effect than that
of the PID controller. (3) For the noncascaded integral system
with inaccurate model and parameter, the ADRC can still
achieve the conversion and its control effect as long as the sys-
tem order can be determined. (4) The model and parameter
error can also be seen as a disturbance and then be estimated
and compensated by the ESOand compensator.This is also an
advantage of the proposed method. (5) This paper presents
an approach to transform the noncascaded integral system
into the cascaded integral form when necessary. (6) This
converting method solves the ADRC control problem of
some noncascaded integral systems in theory and simulation.
It also expands the application scope of the ADRC method.

The theory is a guide before practice. In future, the
converting method for non-PID control system should also
be researched, and the application to a more complex system
can be implemented.
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and A. Luviano-Juárez, “Linear active disturbance rejection
control of underactuated systems: the case of the Furuta pendu-
lum,” ISA Transactions�, vol. 53, no. 4, pp. 920–928, 2014.

[30] Z. Gao, “Scaling and bandwidth-parameterization based con-
troller tuning,” in Proceedings of the American Control Confer-
ence, pp. 4989–4996, Denver, Colo, USA, June 2003.

[31] D. Wu and K. Chen, “Frequency-domain analysis of nonlinear
active disturbance rejection control via the describing function

method,” IEEETransactions on Industrial Electronics, vol. 60, no.
9, pp. 3906–3914, 2013.

[32] D. Li, P. Ding, and Z. Gao, “Fractional active disturbance
rejection control,” ISA Transactions, vol. 62, pp. 109–119, 2016.

[33] X. Shao, J. Liu,W. Yang, J. Tang, and J. Li, “Augmented nonlinear
differentiator design,”Mechanical Systems Signal Processing, vol.
90, pp. 268–284, 2017.

[34] H. Feng and B.-Z. Guo, “Active disturbance rejection control:
Old and new results,” Annual Reviews in Control, vol. 44, pp.
238–248, 2017.

[35] Y. Yu, H. Wang, N. Li, Z. Su, and J. Wu, “Automatic carrier
landing system based on active disturbance rejection control
with a novel parameters optimizer,”Aerospace Science and Tech-
nology, vol. 69, pp. 149–160, 2017.

[36] W. Xue and Y. Huang, “Performance analysis of active distur-
bance rejection tracking control for a class of uncertain LTI
systems,” ISA Transactions�, vol. 58, pp. 133–154, 2015.



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


